7 Circuits
Darlington Transistor Array

BA12003B_BA12003BF_BA12004B_BA12004BF

General Description
BA12003B/BF, BA12004B/BF are darlington transistor array consist of 7 circuits, input resistor to limit base current and output surge absorption clamp diode.

Features
- Built-in 7 circuits
- High output break down voltage
- High DC output current gain
- Built-in input resistor to limit base current
- Built-in output surge absorption clamp diode

Applications
- Motor Drivers
- LED Drivers
- Solenoid Drivers
- Low Side Switch

Key Specifications
- Output break down voltage: VCE=60V(max)
- Output current: Io=500mA/ch(max)
- Operating supply voltage range: -0.5V to +30V
- Operating temperature range: -40°C to +85°C
- DC current gain: hfe=1000(min)
- Input resistor: BA12003B/BF Rin=2.7kΩ
- BA12004B/BF Rin=10.5kΩ

Packages
- DIP16: W(Typ) x D(Typ) x H(Max) = 19.40mm x 6.50mm x 7.95mm
- SOP16: 10.00mm x 6.20mm x 1.71mm

Typical Application Circuit

Datasheet
Not Recommended for New Designs
Pin Configuration

Pin Description

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Function</th>
<th>Pin No.</th>
<th>Pin Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IN1</td>
<td>Input 1</td>
<td>9</td>
<td>COM</td>
<td>Clamp diode</td>
</tr>
<tr>
<td>2</td>
<td>IN2</td>
<td>Input 2</td>
<td>10</td>
<td>OUT7</td>
<td>Output 7</td>
</tr>
<tr>
<td>3</td>
<td>IN3</td>
<td>Input 3</td>
<td>11</td>
<td>OUT6</td>
<td>Output 6</td>
</tr>
<tr>
<td>4</td>
<td>IN4</td>
<td>Input 4</td>
<td>12</td>
<td>OUT5</td>
<td>Output 5</td>
</tr>
<tr>
<td>5</td>
<td>IN5</td>
<td>Input 5</td>
<td>13</td>
<td>OUT4</td>
<td>Output 4</td>
</tr>
<tr>
<td>6</td>
<td>IN6</td>
<td>Input 6</td>
<td>14</td>
<td>OUT3</td>
<td>Output 3</td>
</tr>
<tr>
<td>7</td>
<td>IN7</td>
<td>Input 7</td>
<td>15</td>
<td>OUT2</td>
<td>Output 2</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>Ground</td>
<td>16</td>
<td>OUT1</td>
<td>Output 1</td>
</tr>
</tbody>
</table>

I/O Equivalence Circuit

Note: The diode indicating the junction with a dotted line is a parasitic element.

Not Recommended for New Designs
Absolute Maximum Ratings (T_A=25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage</td>
<td>V_Ce</td>
<td>-0.5 to +60</td>
<td>V</td>
</tr>
<tr>
<td>Output Current</td>
<td>I_O</td>
<td>500</td>
<td>mA/circuit</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>V_I</td>
<td>-0.5 to +30</td>
<td>V</td>
</tr>
<tr>
<td>Diode Reverse Voltage</td>
<td>V_R</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>Diode Forward Current</td>
<td>I_F</td>
<td>500</td>
<td>mA/circuit</td>
</tr>
<tr>
<td>GND Terminal Current</td>
<td>I_GND</td>
<td>2.3(Note 1)</td>
<td>A</td>
</tr>
<tr>
<td>Power Dissipation DIP16</td>
<td>P_D</td>
<td>1.25(Note 2)</td>
<td>W</td>
</tr>
<tr>
<td>Power Dissipation SOP16</td>
<td>P_D</td>
<td>0.62(Note 3)</td>
<td>W</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{op}</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

(Note 1) Pulse width≤20ms, Duty Cycle≤10%, 7 circuits flow the same current.
(Note 2) Reduce 10.0mW per 1°C above 25°C.
(Note 3) Mounted on 70mm x 70mm x 1.6mm glass epoxy board. Reduce 5.0mW per 1°C above 25°C.

Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings.

Electrical Characteristics (Unless otherwise specified, GND=0V T_A=25°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min Limit</th>
<th>Typ Limit</th>
<th>Max Limit</th>
<th>Unit</th>
<th>Conditions</th>
<th>Test Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Leakage Current</td>
<td>I_L</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>µA</td>
<td>V_Ce=60V</td>
<td>1</td>
</tr>
<tr>
<td>Output DC Current Gain</td>
<td>h_FE</td>
<td>1000</td>
<td>2400</td>
<td>-</td>
<td>V</td>
<td>V_Ce=2.0V, I_O=350mA</td>
<td>2</td>
</tr>
<tr>
<td>Output Saturation Voltage 1</td>
<td>V_{Cesat1}</td>
<td>-</td>
<td>0.94</td>
<td>1.1</td>
<td>V</td>
<td>I_O=100mA, I_L=250µA</td>
<td>2</td>
</tr>
<tr>
<td>Output Saturation Voltage 2</td>
<td>V_{Cesat2}</td>
<td>-</td>
<td>1.14</td>
<td>1.3</td>
<td>V</td>
<td>I_O=200mA, I_L=350µA</td>
<td>2</td>
</tr>
<tr>
<td>Output Saturation Voltage 3</td>
<td>V_{Cesat3}</td>
<td>-</td>
<td>1.46</td>
<td>1.6</td>
<td>V</td>
<td>I_O=350mA, I_L=500µA</td>
<td>2</td>
</tr>
<tr>
<td>Input Voltage 1</td>
<td>V_{I1}</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td>V_Ce=2.0V, I_O=100mA</td>
<td>3</td>
</tr>
<tr>
<td>Input Voltage 2</td>
<td>V_{I2}</td>
<td>5.0</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td>V_Ce=2.0V, I_O=200mA</td>
<td>3</td>
</tr>
<tr>
<td>Input Voltage 3</td>
<td>V_{I3}</td>
<td>6.0</td>
<td>-</td>
<td>-</td>
<td>V</td>
<td>V_Ce=2.0V, I_O=350mA</td>
<td>3</td>
</tr>
<tr>
<td>Input Current</td>
<td>I_I</td>
<td>0.90</td>
<td>1.35</td>
<td>-</td>
<td>mA</td>
<td>V_I=3.85V</td>
<td>4</td>
</tr>
<tr>
<td>Diode Reverse Current</td>
<td>I_R</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>µA</td>
<td>V_R=60V</td>
<td>5</td>
</tr>
<tr>
<td>Diode Forward Voltage</td>
<td>V_F</td>
<td>-</td>
<td>1.73</td>
<td>2.0</td>
<td>V</td>
<td>I_R=350mA</td>
<td>6</td>
</tr>
<tr>
<td>Input Capacity</td>
<td>C_I</td>
<td>-</td>
<td>30</td>
<td>-</td>
<td>pF</td>
<td>V_I=0V, f=1MHz</td>
<td>7</td>
</tr>
</tbody>
</table>
Test Circuit

1. Output Leakage Current IL
 ![Output Leakage Current](image)
 - OPEN
 - IL
 - VCE

2. DC Current Gain $hFE = IO/II$
 Output Saturation Voltage VCE_{sat}
 ![DC Current Gain](image)
 - OPEN
 - IO
 - VCE
 - VCE_{sat}

3. Input Voltage VI
 ![Input Voltage](image)
 - OPEN
 - IO
 - VCE

4. Input Current II
 ![Input Current](image)
 - OPEN
 - VI

5. Diode Reverse Current IR
 ![Diode Reverse Current](image)
 - OPEN
 - IR
 - VR

6. Diode Forward Voltage VF
 ![Diode Forward Voltage](image)
 - OPEN
 - VF

7. Input Capacity CI
 ![Input Capacity](image)
 - OPEN
 - HI
 - VI

Capacitance bridge

TEST SIGNAL LEVEL 20mV rms

1. Output Leakage Current IL
2. DC Current Gain $hFE = IO/II$
3. Input Voltage VI
4. Input Current II
5. Diode Reverse Current IR
6. Diode Forward Voltage VF
7. Input Capacity CI

Not Recommended for New Designs
Typical Performance Curve (Reference Data)

Figure 1. Output Leakage Current vs Ambient Temperature

Figure 2. Output DC Current Gain vs Output Current

Figure 3. Output Current vs Input Current

Figure 4. Output Saturation Voltage vs Output Current

Not Recommended for New Designs
Typical Performance Curve (Reference Data) - continued

Figure 5.
Output Saturation Voltage2 vs Output Current

Figure 6.
Output Saturation Voltage3 vs Output Current

Figure 7.
Input Current vs Input Voltage

Figure 8.
Input Current vs Input Voltage

Not Recommended for New Designs
Typical Performance Curve (Reference Data) - continued

Figure 9.
Turn-ON Time vs Ambient Temperature

Figure 10.
Turn-OFF Time vs Ambient Temperature

Figure 11.
Output Current - Duty Cycle (BA12003BF/BA12004BF)

Figure 12.
Output Current - Duty Cycle (BA12003BF/BA12004BF)

These limit is based on calculation (IGND ÷ the number of ON-channel).

Not Recommended for New Designs
Typical Performance Curve (Reference Data) - continued

Figure 13.
Output Current - Duty Cycle
(BA12003B/BA12004B)

Figure 14.
Output Current - Duty Cycle
(BA12003B/BA12004B)

These limit is based on calculation (IGND×the number of ON-channel).
Power Dissipation

Power dissipation (total loss) indicates the power that can be consumed by IC at T_A=25°C (normal temperature). IC is heated when it consumes power, and the temperature of IC chip becomes higher than ambient temperature. The temperature that can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited. Power dissipation is determined by the temperature allowed in IC chip (maximum junction temperature) and thermal resistance of package (heat dissipation capability).

The maximum junction temperature is typically equal to the maximum value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead frame of the package. The parameter which indicates this heat dissipation capability (hardness of heat release) is called thermal resistance, represented by the symbol θ_JA (°C/W). The temperature of IC inside the package can be estimated by this thermal resistance. Figure 15(a) shows the model of thermal resistance of the package. Thermal resistance θ_JA, ambient temperature T_A, maximum junction temperature T_jmax, and power dissipation P_d can be calculated by the equation below:

θ_JA = (T_jmax - T_A) / P_d (°C/W)

Derating curve in Figure 15(b) indicates power that can be consumed by IC with reference to ambient temperature. Power that can be consumed by IC begins to attenuate at certain ambient temperature. This gradient is determined by thermal resistance θ_JA. Thermal resistance θ_JA depends on chip size, power consumption, package, ambient temperature, package condition, wind velocity, etc. even when the same package is used. Thermal reduction curve indicates a reference value measured at a specified condition. Figure 16 show a derating curve for an example of BA12003B/BA12004B and Figure 17 show a derating curve for an example of BA12003BF/BA12004BF.
Power Dissipation - continued

Figure 16. Derating curve

Figure 17. Derating curve

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Slope of Derating Curve</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA12003B/BA12004B</td>
<td>10.0</td>
<td>mW/°C</td>
</tr>
<tr>
<td>BA12003BF/BA12004BF</td>
<td>5.0</td>
<td>mW/°C</td>
</tr>
</tbody>
</table>

Not Recommended for New Designs
Operational Notes

1. Reverse Connection of Power Supply
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply pins.

2. Power Supply Lines
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors.

3. Ground Voltage
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. However, pins that drive inductive loads (e.g. motor driver outputs, DC-DC converter outputs) may inevitably go below ground due to back EMF or electromotive force. In such cases, the user should make sure that such voltages going below ground will not cause the IC and the system to malfunction by examining carefully all relevant factors and conditions such as motor characteristics, supply voltage, operating frequency and PCB wiring to name a few.

4. Ground Wiring Pattern
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.

5. Thermal Consideration
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the Pd rating.

6. Recommended Operating Conditions
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter.

7. Inrush Current
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections.

8. Operation Under Strong Electromagnetic Field
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.

9. Testing on Application Boards
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.

10. Inter-pin Short and Mounting Errors
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few.

11. Unused Input Pins
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line.
Operational Notes – continued

12. **Regarding the Input Pin of the IC**
 This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below):

 - When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.
 - When GND > Pin B, the P-N junction operates as a parasitic transistor.

 Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided.

13. **Ceramic Capacitor**
 When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others.

14. **Area of Safe Operation (ASO)**
 Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe Operation (ASO).

15. **Output Pins**
 Connecting zener diode should be enable to prevent degradation of current time. Please use zener diode satisfy with $V_{CC} + V_{Z} \leq V_{CE(SUS)}$.

16. **Output clamp diode**
 Figure 19 is a construction of the clamp diode part in this IC. When the clamp diode works, PNP transistor works. Therefore, a consumption power increases. When a consecutive surge current (or backward current of motor) flows in this clamp diode, we recommend the diode with a low forward voltage etc. (schottky diode) connection between OUT and COM for bypass pathway of surge current.

Figure 18. Example of monolithic IC structure

Figure 19. Construction of output clamp diode
Ordering Information

Part Number
BA12003B
BA12004B

Package
None: DIP16
F: SOP16

Packaging and forming specification
None: Tube (DIP16)
E2: Embossed tape and reel (SOP16)

Marking Diagrams

DIP16(TOP VIEW)

Part Number Marking
LOT Number

SOP16(TOP VIEW)

Part Number Marking
LOT Number

1PIN MARK

Lineup

<table>
<thead>
<tr>
<th>Part Number Marking</th>
<th>Package</th>
<th>Orderable Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA12003B</td>
<td>DIP16</td>
<td>BA12003B</td>
</tr>
<tr>
<td>BA12004B</td>
<td>DIP16</td>
<td>BA12004B</td>
</tr>
<tr>
<td>BA12003BF</td>
<td>SOP16</td>
<td>BA12003BF-E2</td>
</tr>
<tr>
<td>BA12004BF</td>
<td>SOP16</td>
<td>BA12004BF-E2</td>
</tr>
</tbody>
</table>

Not Recommended for New Designs
Physical Dimension, Tape and Reel Information

<table>
<thead>
<tr>
<th>Package Name</th>
<th>DIP16</th>
</tr>
</thead>
</table>

(UNIT: mm)

<table>
<thead>
<tr>
<th>Container Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container</td>
</tr>
<tr>
<td>Quantity</td>
</tr>
<tr>
<td>Direction of feed</td>
</tr>
</tbody>
</table>

Order quantity needs to be multiple of the minimum quantity.
Physical Dimension, Tape and Reel Information – continued

<table>
<thead>
<tr>
<th>Package Name</th>
<th>SOP16</th>
</tr>
</thead>
</table>

Tape and Reel Information

<table>
<thead>
<tr>
<th>Tape</th>
<th>Embossed carrier tape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
<td>2000pcs</td>
</tr>
</tbody>
</table>

- **Direction of feed:**
 - The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand.

Not Recommended for New Designs
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.May.2015</td>
<td>002</td>
<td>P.1 Correction : Operating temperature range</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P.3 Correction : Mention position of limit (Input Voltage1,2,3 in an Electrical Characteristics)</td>
</tr>
</tbody>
</table>

Not Recommended for New Designs
Notice

Precaution on using ROHM Products

1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific Applications.

(Note 1) Medical Equipment Classification of the Specific Applications

<table>
<thead>
<tr>
<th>JAPAN</th>
<th>USA</th>
<th>EU</th>
<th>CHINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS III</td>
<td>CLASS III</td>
<td>CLASS II b</td>
<td>CLASS III</td>
</tr>
</tbody>
</table>

2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:

[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure

3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:

[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended), or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
[h] Use of the Products in places subject to dew condensation

4. The Products are not subject to radiation-proof design.

5. Please verify and confirm characteristics of the final or mounted products in using the Products.

6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.

7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature.

8. Confirm that operation temperature is within the specified range described in the product specification.

9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.

2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification
Precautions Regarding Application Examples and External Circuits

1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.

2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
 [b] the temperature or humidity exceeds those recommended by ROHM
 [c] the Products are exposed to direct sunshine or condensation
 [d] the Products are exposed to high Electrostatic

2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.

3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.

4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

QR code printed on ROHM Products label is for ROHM’s internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export.

Precaution Regarding Intellectual Property Rights

1. All information and data including but not limited to application example contained in this document is for reference only, ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data.

2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software).

3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein.

Other Precaution

1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.

2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.

3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.

4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.
General Precaution

1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any ROHM’s Products against warning, caution or note contained in this document.

2. All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales representative.

3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all information contained in this document is accurate or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ROHM Semiconductor:

BA12003B BA12003BF-E2 BA12004BF-E2